Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity
نویسندگان
چکیده
Fully homomorphic encryption is an encryption method with the property that any computation on the plaintext can be performed by a party having access to the ciphertext only. Here, we formally define and give schemes for quantum homomorphic encryption, which is the encryption of quantum information such that quantum computations can be performed given the ciphertext only. Our schemes allow for arbitrary Clifford group gates, but become inefficient for circuits with large complexity, measured in terms of the non-Clifford portion of the circuit (we use the “π/8” non-Clifford group gate, also known as the T-gate). More specifically, two schemes are proposed: the first scheme has a decryption procedure whose complexity scales with the square of the number of T-gates (compared with a trivial scheme in which the complexity scales with the total number of gates); the second scheme uses a quantum evaluation key of length given by a polynomial of degree exponential in the circuit’s T-gate depth, yielding a homomorphic scheme for quantum circuits with constant T-depth. Both schemes build on a classical fully homomorphic encryption scheme. A further contribution of ours is to formally define the security of encryption schemes for quantum messages: we define quantum indistinguishability under chosen plaintext attacks in both the publicand private-key settings. In this context, we show the equivalence of several definitions. Our schemes are the first of their kind that are secure under modern cryptographic definitions, and can be seen as a quantum analogue of classical results establishing homomorphic encryption for circuits with a limited number of multiplication gates. Historically, such results appeared as precursors to the breakthrough result establishing classical fully homomorphic encryption.
منابع مشابه
Reusable garbled gates for new fully homomorphic encryption service
In this paper, we propose a novel way to provide a fully homomorphic encryption service, namely by using garbled circuits. From a high level perspective, Garbled circuits and fully homomorphic encryption, both aim at implementing complex computation on ciphertexts. We define a new cryptographic primitive named reusable garbled gate, which comes from the area of garbled circuits, then based on t...
متن کاملQuantum Homomorphic Encryption for Polynomial-Sized Circuits
We present a new scheme for quantum homomorphic encryption which is compact and allows for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broadbent and Jeffery [BJ15] and recent results in the area of instantaneous non-local quantum computation [Spe15], we show how to construct quantum gadgets that allow perfect correction of the errors which o...
متن کاملA New Design for Two-input XOR Gate in Quantum-dot Cellular Automata
Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...
متن کاملLimitations on Transversal Computation through Quantum Homomorphic Encryption
Transversality is a simple and effective method for implementing quantum computation faulttolerantly. However, no quantum error-correcting code (QECC) can transversally implement a quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible classical computation is often a dominating part of useful quantum computation, whether or not it can be implemented tran...
متن کاملOn Statistically-Secure Quantum Homomorphic Encryption
Homomorphic encryption is an encryption scheme that allows computations to be evaluated on encrypted inputs without knowledge of their raw messages. Recently Ouyang et al. constructed a quantum homomorphic encryption (QHE) scheme for Clifford circuits with statistical security (or information-theoretic security (IT-security)). It is desired to see whether an informationtheoretically-secure (ITS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015